首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69692篇
  免费   8040篇
  国内免费   2758篇
电工技术   1057篇
技术理论   1篇
综合类   3019篇
化学工业   26089篇
金属工艺   10091篇
机械仪表   1294篇
建筑科学   1966篇
矿业工程   1003篇
能源动力   1345篇
轻工业   9427篇
水利工程   372篇
石油天然气   1341篇
武器工业   344篇
无线电   2627篇
一般工业技术   16468篇
冶金工业   2904篇
原子能技术   252篇
自动化技术   890篇
  2024年   285篇
  2023年   1652篇
  2022年   2318篇
  2021年   3213篇
  2020年   2988篇
  2019年   2546篇
  2018年   2834篇
  2017年   3238篇
  2016年   3242篇
  2015年   3360篇
  2014年   3972篇
  2013年   5089篇
  2012年   4551篇
  2011年   5582篇
  2010年   3747篇
  2009年   4066篇
  2008年   3392篇
  2007年   3720篇
  2006年   3547篇
  2005年   2809篇
  2004年   2740篇
  2003年   2320篇
  2002年   1872篇
  2001年   1263篇
  2000年   1035篇
  1999年   789篇
  1998年   698篇
  1997年   598篇
  1996年   501篇
  1995年   461篇
  1994年   345篇
  1993年   252篇
  1992年   262篇
  1991年   212篇
  1990年   246篇
  1989年   233篇
  1988年   84篇
  1987年   56篇
  1986年   59篇
  1985年   69篇
  1984年   67篇
  1983年   33篇
  1982年   55篇
  1981年   7篇
  1980年   35篇
  1979年   7篇
  1978年   6篇
  1975年   6篇
  1974年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
101.
Layer-structured regenerated silk fibroin (SF)/graphene oxide (GO) composite films were fabricated by a facile solution casting method. Fourier transform infrared spectroscopy, X-ray diffraction, and thermal gravity analysis confirmed the successful incorporation and uniform dispersion of graphene oxides in the SF matrix. To visualize GO's effect on the morphological evolution, atomic force microscopic images were recorded in real-time during the composite elongation to establish a correlation between microscopic structural characters and macroscopic mechanical properties. The result showed that the incorporation of graphene oxide into the SF matrix resulted in chain conformational transition, film surface flattening, and mechanical reinforcement. Surface roughness dramatically decreased from 65 to 10 nm, while tensile modulus increased substantially from 8.61 to 22.37 MPa by adding well-dispersed graphene oxide up to 1 wt% into the SF matrix. Through the real-time AFM observation under the horizontal stretching mode, the surface topography of original SF films varied from tori-spherical aggregations to rod-like ones resulting from GO's incorporation. In the meantime, SF's hydrophobicity was also increased, as manifested by contact angle increase from 30.81° to 45.09°.  相似文献   
102.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   
103.
A digital light processing (DLP) technology has been developed for 3D printing lead-free barium titanate (BTO) piezoelectric ceramics. By comparing the curing and rheological properties of slurries with different photosensitive monomer, a high refractive index monomer acryloyl morpholine (ACMO) was chosen, and a design and preparation method of BTO slurry with high solid content, low viscosity and high curing ability was proposed. By further selecting the printing parameters, the single-layer exposure time was reduced and the forming efficiency has been greatly improved. Sintered specimens were obtained after a nitrogen-air double-step debinding and furnace sintering process, and the BTO ceramics fabricated with 80 wt% slurry shows the highest relative density (95.32 %) and piezoelectric constant (168.1 pC/N). Furthermore, complex-structured BTO ceramics were prepared, impregnated by epoxy resin and finally assembly made into hydrophones, which has significance for the future design and manufacture of piezoelectric ceramic-based composites that used in functional devices.  相似文献   
104.
《Ceramics International》2021,47(22):31852-31859
The primary purpose of this work is to introduce the second phase of graphene (G) into non-stoichiometric TiO1.80 successfully and optimize the thermoelectric properties of this composite material through high pressure and high temperature (HPHT) technology. The purpose of doping Ti powder under high pressure is to create a closed reducing atmosphere to change the ratio of titanium to oxygen in the titanium oxide base. The addition of graphene can considerably improve the electrical properties of the material and reduce its resistivity. An X-ray diffractometer, X-ray photoelectron spectrometer, scanning electron microscope, and transmission electron microscope were used to analyze and characterize the phase structure, chemical bond, micro morphology and crystal morphology of the samples. An abundance of grain boundaries and lattice dislocation defects can inhibit the lattice thermal conductivity. We also tested and analyzed the thermoelectric performance of the high-temperature and high-pressure synthetic samples through a variable temperature system. The variation of the absorption intensity of the ultraviolet UV spectrum with wavelength shows that high pressure can reduce the band gap, which is beneficial to the carrier transition and improves the conductivity of semiconductors. HPHT optimizes both the electrical and the thermal parameters of the sample. At a final sintering pressure of 5.0 GPa, the dimensionless figure of merit (zT) of the bulk composite material G/TiO1.80 was found to be 0.23 at 700 °C.  相似文献   
105.
《Ceramics International》2021,47(18):25689-25695
The high-temperature mechanical and dielectric properties of Si2N2O ceramics are often limited by the introduction of a sintering aid. Herein, dense Si2N2O was prepared at 1700 °C by hot-pressing oxidized amorphous Si3N4 powder without sintering additives. A homogeneous network with short-range order and a SiN3O structure was formed in the oxidized amorphous Si3N4 powder during the hot-pressing process. Si2N2O crystals preferentially nucleated at positions within the SiN3O structure and grew into rod-like and plate-like grains. Fully dense ceramics with mainly crystalline Si2N2O and some residual amorphous phases were obtained. The as-prepared Si2N2O possessed a good flexural strength of 311 ± 14.9 MPa at 1400 °C, oxidation resistance at 1500 °C, and a low dielectric loss tangent of less than 5 × 10−3 at 1000 °C.  相似文献   
106.
《Ceramics International》2021,47(18):25505-25513
Herein, (Co0.5Ni0.5)Cr0.3Fe1.7O4/graphene oxide nanocomposites were fabricated by ultrasonication technique, using pure spinel ferrite and graphene oxide synthesized by sol-gel method and modified Hummers' method, respectively. The effect of graphene incorporation with ferrite nanoparticles was studied by X-ray diffraction (XRD), electrical and dielectric measurements. XRD analysis revealed the spinel phase for the ferrite sample and confirmed the formation of graphene oxide. The crystallite size was found in the range of 3743 nm and the porosity increased with the increase in the concentration of graphene oxide in the composites. The DC electrical resistivity of spinel ferrite was found equal to 3.83×109 Ω.cm and it substantially decreased with the increase in the percentage of graphene oxide at room temperature. The real and imaginary part of relative permittivity followed the Maxwell-Wagner type of interfacial polarization. AC conductivity confirmed the conduction by hopping mechanism and increased on increasing the GO content. The coupling of magnetic ferrite with graphene oxide tunes the magneto-electrical properties for potential applications at high frequencies.  相似文献   
107.
The current demand for high-refractive index materials is very high due to their importance in optoelectronic applications. Such materials already exist in the market, but they present many disadvantages. They might contain toxic metals; their preparation can be challenging or produce high quantity of waste. Consequently, there is an urgent need to produce new friendly coatings with high-refractive index. Hybrid organic–inorganic polysiloxanes can offer a solution to this problem. They can be easily prepared from nontoxic alkoxy silanes using the sol–gel chemistry process. Herein, a series of new hybrid polysiloxanes are synthesized from the monomer 1–(2–(triethoxysilyl)ethyl)triphenylsilane and other silanes. The preparation of the macromolecules is optimized at both stages of the sol–gel process. The polymers are characterized by gel permeation chromatography and NMR spectroscopy. Spin coating of the materials on silicon wafers, followed by film thickness and refractive index measurements, indicates that the new polysiloxanes can have refractive indexes as high as 1.6 with thicknesses varying from 2200 to 3700 nm. Consequently, it is expected that the new materials described in this report are valuable for optoelectronic applications such as high-dielectric constant (high-k) gate oxides, interlayer high-k dielectrics, or high-refractive index abrasion resistant coatings.  相似文献   
108.
In this study, we present a DLP 3D-printing strategy for the fabrication of SiCN ceramic matrix composites (CMCs). The polysilazane-based preceramic polymer containing inert fillers was UV-cured into a green body and then converted to SiCN CMCs after pyrolysis. The introduced fillers (Si3N4 particles and Si3N4 whiskers) as reinforcements are well dispersed in the matrix, which can not only effectively reduce the linear shrinkage and weight loss, but also greatly improve the mechanical properties of the SiCN CMCs. The bending strength of the SiCN CMCs reinforced with 10 wt% Si3N4 whiskers (without surface polished) reached 180.7 ± 15.6 MPa. Furthermore, the effect of fillers content on microstructure and porosity of the SiCN CMCs are discussed, and it was found that the excessive fillers led to increased pore defects and decreased continuity of the matrix, thereby reducing the mechanical properties of the SiCN CMCs. This strategy provides a promising ceramic manufacturing technique to fabricate polymer‐derived CMCs with complex-shaped and high-performance for potential demanding applications.  相似文献   
109.
《Ceramics International》2022,48(22):32827-32836
To investigate the crystal structure, electrical properties, and magnetic properties of Ca–Sn co-doped Y3-xCaxFe5-xSnxO12 (x = 0.00–0.25 in steps of 0.05), solid-state reaction experiments, first principles calculations, and complex crystal bonding theoretical calculations were performed. The relative permittivity (εr) is strongly correlated with the average bond ionicity when Ca2+ is added. Furthermore, appropriate Sn4+ substitution significantly lowers the dielectric loss (tanδε) associated with the lattice energy. The right amount of Ca–Sn co-doping can change the saturation magnetization (4πMS) and improve the microscopic morphology of YIG, lowering the ferromagnetic resonance linewidth (ΔH) of YIG. The optimized microwave dielectric and magnetic properties are as follows: εr = 14.7, tanδε = 4.15 × 10?4, 4πMS = 1680 G, and ΔH = 53 Oe for Y2.8Ca0.2Fe4.8Sn0.2O12 sintered for 6 h at 1425 °C. Based on this material, a simple 3D model of a strip-line circulator with an insertion loss of less than 0.3 dB at each port and isolation greater than 20 dB in the 10–12 GHz range was developed, indicating the potential of the material for microwave high-frequency components such as circulators.  相似文献   
110.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号